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Abstract
Schizophrenia is a mental disorder characterized by episodes of psychosis; major symptoms include hallucinations, delusions, 
and disorganized thinking. More recent theories focus on particular disorders of interneurons, dysfunctions in the immune 
system, abnormalities in the formation of myelin, and augmented oxidative stress that lead to alterations in brain structure. 
Decreased dopaminergic activity and increased phospholipid metabolism in the prefrontal cortex might be involved in 
schizophrenia. Antipsychotic drugs used to treat schizophrenia have many side effects. Alternative therapy such as curcumin 
(CUR) can reduce the severity of symptoms without significant side effects. CUR has important therapeutic properties such 
as antioxidant, anti-mutagenic, anti-inflammatory, and antimicrobial functions and protection of the nervous system. Also, the 
ability of CUR to pass the blood–brain barrier raises new hopes for neuroprotection. CUR can improve and prevent further 
probable neurological and behavioral disorders in patients with schizophrenia. It decreases the side effects of neuroleptics and 
retains lipid homeostasis. CUR increases the level of brain-derived neurotrophic factor and improves hyperkinetic movement 
disorders. CUR may act as an added counteraction mechanism to retain cell integrity and defense against free radical injury. 
Thus it appears to have therapeutic potential for improvement of schizophrenia. In this study, we review several properties 
of CUR and its ability to improve schizophrenia and minimize the side effects of antipsychotic drugs, and we explore the 
underlying mechanisms by which CUR affects schizophrenia and its symptoms.
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Abbreviations
CUR   Curcumin
BDNF  Brain-derived neurotrophic factor
CLO  Clozapine
TD  Tardive dyskinesia
EPSE  Extrapyramidal side effects
AMPK  AMP-activated protein kinase
ACC   Acetyl CoA carboxylase
SREBPs  Sterol regulatory element-binding proteins

CREB  CAMP response element-binding protein
DISC1  Disrupted-in-schizophrenia 1
NMDA  N-methyl-d-aspartate
HDAC  Histone deacetylase
PDB  Protein data bank

Introduction

Schizophrenia as a long-term mental disorder affects about 
one percent of the world’s total population [1]. The main 
contributory factors in this disease seem to be early envi-
ronmental and genetic factors, whereas the presence of 
other mental disorders can play a role as well. Because of 
all possible combinations of symptoms, it remains to be seen 
whether schizophrenia is a single disorder or composed of 
different syndromes. Augmented oxidative stress may be 
related to the pathophysiology of schizophrenia disease [2]. 
This condition is related to alterations in brain structures 
involving loss of gray matter, expanded ventricles [3] and 
reduction of dendritic spines from pyramidal neurons of 
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the cortex [4]. Also, decreased dopaminergic activity and 
increased phospholipid metabolism in the prefrontal cortex 
might be involved in schizophrenia [5].

The onset of symptoms usually occurs during young 
adulthood, and approximately 0.3–0.7% of people will expe-
rience schizophrenia during their lifetime. Despite the fact 
that this disorder affects a person’s ability to think in an 
organized manner, it also is associated with chronic behav-
ioral and emotional problems [2]. Schizophrenic patients are 
likely to have extra comorbidities such as major depression 
and anxiety. Social problems like long-term unemployment, 
impoverishment, and homelessness are prevalent. Symp-
toms may be caused by or worsen with some recreational 
and prescription drugs [2]. In schizophrenia, considerable 
functional defectss include negative symptoms (such as loss 
of volition, insensibility, antisocial behaviors, and affec-
tive flattening), positive symptoms (such as hallucinations, 
delusions, and bizarre behavioral disturbances), and neuro-
cognitive impairments that involve 20–30% of people with 
schizophrenia who are refractory to current antipsychotic 
treatment [6]. The positive symptoms of schizophrenia sig-
nificantly improve with the second generation of atypical 
antipsychotics such as quetiapine, clozapine (CLO), olan-
zapine, risperidone, ziprasidone, and aripiprazole [7]. But 
comprehensive psychosocial consequences in schizophrenia 
remain moderate after using the agents [6]. Antipsychot-
ics, although the first line of treatment, cause many side 
effects. There is, therefore, a need for an adjuvant therapy 
that could be utilized as an alternative therapy to reduce the 
severity of symptoms. CUR could be considered an alterna-
tive treatment because of its extensive beneficial effects on 
neurodegenerative diseases [8]. CUR (diferuloylmethane) is 
the yellow plant pigment in Indian saffron. It is extensively 
utilized in South Asian and Middle East regions as a die-
tary component [9]. Past studies have shown that CUR has 
important therapeutic properties such as antioxidant, anti-
mutagenic, anti-inflammatory and antimicrobial functions 
and protection of the nervous system [10, 11]. The ability 
of CUR to pass the blood–brain barrier raises new hopes for 
neuroprotection. Inflammation and oxidative stress around 
neurons and glial cells are significantly related to brain aging 
and injury [12]. Limited absorption, fast metabolism, and 
quick systemic elimination even at high doses of CUR and 
its metabolites imply the low bioavailability of this agent 
[13]. To improve the bioavailability of CUR, very different 
approaches have been utilized. These approaches include the 
application of adjuvants like piperine, liposomal CUR, CUR 
nanocapsules, and phospholipid complexes of CUR [14].

CUR, in the early stages of the disease, can prevent addi-
tional oxidative damages and may result in improving and 
preventing further probable neurological and behavioral dis-
orders [15]. The role of CUR and its different mechanisms 
in the improvement of schizophrenia have been shown in 

preclinical and clinical studies. CUR may be able to decrease 
the serious side effects associated with prescribing neuro-
leptics [8, 16]. To this day, a comprehensive review arti-
cle about CUR and new specific mechanisms of action on 
schizophrenia has not been published. Thus, the current 
study aims to review the underlying mechanisms of CUR 
that affect schizophrenia and its symptoms.

Pathophysiology of Schizophrenia

The accurate pathophysiology of schizophrenia is not 
well known yet. The dopamine hypothesis and the gluta-
mate hypothesis are two commonly supported hypotheses 
[17]. More recent theories focus on particular disorders of 
interneurons, dysfunctions of the immune system, abnor-
malities in the formation of myelin, and oxidative stress 
[18–20]. This disorder is characterized by positive and nega-
tive symptoms and neurocognitive disorders [21]. In addi-
tion to positive and negative symptoms, cognitive damage 
is a frequent core characteristic of schizophrenia [22] and is 
associated with the volume diminution of the hippocampus, 
a region central to learning, memory, and cognitive integra-
tion [23].

Cognitive impairments are present in domains of episodic 
memory, executive function, social cognition and attention 
[24]. These functions are dependent on the prefrontal cor-
tex and hippocampus [25]. In schizophrenia, neurodevel-
opmental anomalies in sensitive brain development periods 
probably lead to hippocampal-prefrontal pathway damages 
and subsequently cause the appearance of disease symptoms 
in young adulthood [26]. Depression and schizophrenia are 
interrelated as indicated by several observations. The most 
common indicators advanced include depression as intrinsic 
to the disease, depression as a side effect of antipsychotics, 
depression as a negative symptom of the disease and depres-
sion as a psychological response to the consciousness of 
suffering from psychosis [27]. In the pre-psychotic stage, 
negative and cognitive symptoms emerge [28]. The presence 
of more cognitive and negative symptoms are significantly 
related to less functional outcomes [29, 30]. Also, motor 
symptoms like parkinsonism, neurological soft signs, and 
abnormal involuntary movements due to their high preva-
lence in schizophrenia have received special attention [31].

Due to the lack of pathognomonic symptoms, schizo-
phrenia is usually diagnosed by exclusion, based on picking 
up characteristics of psychosis from collateral information 
and diagnostic interview [32]. Identification of the clinical 
syndrome is still the basis of diagnosis in psychiatry [33], 
and the diagnostic criteria constantly rely on family his-
tory, clinical features and outcomes [34]. Due to the lack 
of biological markers to diagnose schizophrenia, long-term 
attention to patients’ symptoms and behaviors is necessary 
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to verify the diagnosis [33, 35]. The efficiency of these diag-
nostic categories depends on the temporal stability and the 
inter-rater reliability [36, 37]. The first line of treatment for 
schizophrenia is antipsychotic drugs such as clozapine, ris-
peridone, olanzapine, quetiapine, aripiprazole, and ziprasi-
done that usually result in a decrease in positive symptoms 
whilst they have minimal or no effect on cognitive and nega-
tive symptoms [38]. The treatment with antipsychotic drugs 
also leads to side effects such as metabolic syndrome, weight 
gain, tardive dyskinesia (TD), and dyslipidemia [39, 40]. 
Therefore, considering the side effects of antipsychotic drugs 
and the results of some studies that show the role of CUR 
in the treatment of schizophrenia, CUR can be proposed as 
an alternative treatment that will focus on as an effective 
adjuvant agent in the present review.

CUR and the Side Effects of Antipsychotic 
Drugs for Schizophrenia Therapy

Antipsychotic drugs are widely used to treat schizophrenia 
disorder and other related psychiatric diseases. Dopamine 
(DA) receptors which are widely present throughout the 
brain, are blocked by these drugs. Unfortunately, the long-
term use of antipsychotic drugs results in severe extrapy-
ramidal side effects (EPSE) [41]. Moreover, the short-term 
effects involve parkinsonism and the next emerging tardive 
dyskinesia [42–44]. Presently available treatments for these 
diseases are mainly symptomatic and insufficient; they are 
usually associated with damaging side effects. Due to tar-
dive dyskinesia caused by antipsychotic drugs, researchers 
seek new drugs with less adverse extrapyramidal side effects 
[43, 45]. The roles of 5-hydroxytryptamine (serotonin)-1A 
and 2A/2C receptors in the regulation of dopaminergic neu-
rotransmission in preclinical studies have been suggested 
[46, 47]. Research is also aimed at finding better therapeutic 
strategies for schizophrenia and related diseases. Moreover, 
in the early phases of the disease, the use of antioxidants 
like CUR as an adjunctive treatment may prevent additional 
oxidative damages and may result in improving and prevent-
ing further probable neurological and behavioral disorders 
[48]. The first neuroleptic drugs were developed in the early 
1950s. The common antipsychotic properties of these drugs 
are executed via their antagonistic effect on dopaminergic 
receptors. Haloperidol, the most typical antipsychotic drug, 
is primarily beneficial in improving the positive signs of 
schizophrenia [49]. It was between the early 1960s and the 
1980s that the “second generation” of neuroleptics expanded. 
Clozapine was primarily proposed as an innovator drug with 
more effectiveness than the existing drugs [50]. The mecha-
nism of the action of atypical neuroleptics is different from 
that of the older drugs. They show fewer EPSE because of 
their combined effects on serotonergic and dopaminergic 

receptors. In the past, they were called atypical, because 
they were thought to not likely induce dyskinetic symptoms 
in some patients. Nowadays, we know that the symptoms 
of tardive dyskinesia are induced by atypical neuroleptics. 
However, the appearance of these symptoms may be delayed 
[15]. CUR administration reversed oxidative stress-induced 
tardive dyskinesia in rats and perhaps can be a promising 
therapeutic choice to improve hyperkinetic movement dis-
order [48]. Although there is no report about the direct inter-
ference of polyphenols with the pathophysiology of schizo-
phrenia, the indirect effects of the natural polyphenols on 
the side effects of some drugs have been reported in several 
studies [8]. The role of oxidative stress in the development 
of haloperidol-induced orofacial tardive dyskinesia was veri-
fied by Bishnoi et al. [48], who concluded that the chronic 
administration of haloperidol enhanced vacuous chewing 
movements, facial jerking, tongue protrusions, and even an 
oxidative detriment in all main areas of the rat’s brain. CUR 
dose-dependently eliminated these changes (Table 1). CUR 
has been suggested as a possible treatment for hyperkinetic 
movement. Moreover, flavonoid quercetin (3,5,7,3,4-pen-
tahydroxyflavone) reversed haloperidol-induced EPSE, 
catalepsy, which is commonly related to catatonic schizo-
phrenia in vitro. This physical condition is defined by mus-
cular rigidity, suspension of sensation, fixity of posture, and 
the lack of contact with surroundings [51]. Furthermore, 
lipid peroxidation in plasma induced by haloperidol, the 
first-generation antipsychotic, was decreased by quercetin 
and resveratrol (3,4,5-trihydroxystilbene) in vivo. Amisul-
pride, a second-generation antipsychotic, did not affect the 
amount of lipid peroxidation biomarker thiobarbituric acid 
reactive species (TBARS) [52]. However, oxidative stress 
induced by haloperidol could be eliminated in vivo by vari-
ous polyphenols such as CUR [8]. The ability of counterac-
tion to TD induced by haloperidol established its potential 
in the pharmacotherapy of schizophrenia in rodents [48]. In 
patients with treatment-resistant schizophrenia, Clozapine 
is a last choice treatment, but serious metabolic side effects 
such as dyslipidemia are often observed as a result of the 
prescription of atypical antipsychotics [53]. Drug-induced 
dyslipidemia may be secondary to obesity and hyperorexia. 
The antipsychotic drugs could also induce direct effects on 
the lipid metabolism of the peripheral tissues [54]. AMP-
activated protein kinase (AMPK) appeared as a key modula-
tor in both lipid homeostasis and hepatic energy metabolism. 
It inhibited the activity of acetyl CoA carboxylase (ACC) 
and 3-hydroxy-3-methyl glutaryl CoA reductase and led to 
the suppression of both cholesterol and fatty acid biosyn-
thesis [55, 56].

Furthermore, sterol regulatory element-binding proteins 
(SREBPs), the main transcriptional regulators of lipo-
genesis, can be inactivated by AMPK, and subsequently 
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Table 1  Characteristics of studies investigating the effects of curcumin on schizophrenia and minimizing side effects of antipsychotic drugs

Study and year Participants Study design Conclusion

Mahendra Bishnoi et al. [48] Male wistar rats
(180–220g;10–12 rats/group)

haloperidol was diluted with 
distilled water

Administration of haloperidol

increased vacuous
Curcumin was dissolved in chewing movements,
carboxymethyl cellulose (CMC) tongue protrusions, facial jerking
haloperidol and/or curcumin which was does- dependently
was/were administered intraperi-

toneally
inhibited by curcumin

and per-orally respectively in a
constant volume of 0/5 ml per 

100 g
of body weight of rats Haloperidol resulted increased

dopamine receptor sensitivity
Animals divided in 5 groups: and decrease retention time on
1_ received CMC elevated plus maze paradigm
2_received haloperidol(1 mg/

kg) + CMC
pretreatment with curcumin 

reversed
3_received haloperidol(1 mg/

kg) + 25 mg/kg curcumin
these behavioral changes

4_received haloperidol(1 mg/
kg) + 50 mg/kg curcumin

5_received 50 mg/kg curcumin Haloperidol induced oxidative
damage in all major regions of

They were administered once daily 
for a 21 days

brain which was attenuated by 
curcumin

haloperidol decrease turnover
of dopamine, serotonin and norepi-

nephrine
in both cortical and subcortical 

regions which
was again does_dependently 

reversed by
treatment with curcumin

Woodburry-Farina [57] Patients with schizophrenia There are two groups: Both groups improved in neuro-
cognitive index1_ 1 g/d curcumin (n = 7)

2_4g/d curcumin (n = 8)
12 weeks

Wynn et al. [58] Patients with schizophrenia Intervention group:
Sexes eligible for study 360 mg/d Curcumin (n = 17) increased brain_drived_neuro-

trophic
Age: 18 to 65 years Compared with placebo group 

(n = 19)
8 weeks

Kucukgoncu et al. [59] Patients with schizophrenia Intervention group:
9 males, 3 females 180 mg/d curcumin (n = 6) Improve working memory
Mean age = 41.33 Placebo group (n = 6) Reduce IL_6 levels
(5 to 51 years) 8 weeks

Chiu et al. [60] Patients with schizophrenia n = 17 Randomized in two groups Both groups improved in cognition
1_1g/d Supercurcumin TM
2–4g/d Supercurcumin TM
16 Weeks
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downstream lipogenic genes are inhibited [63]. In the allos-
teric regulation of multiple lipid biosynthetic pathways, 
hepatic SREBPs are important. Several studies have indi-
cated that CLO can stimulate the SREBP pathway and can 
increase downstream lipogenesis, whilst CUR has hypolipi-
demic properties. A research has been conducted to ana-
lyze the protective effects of CUR versus lipid disturbance 
induced by CLO via the expression of the key components in 
the metabolism of hepatic lipid. The results indicated that a 
four-week treatment with CLO (15 mg/kg/day) significantly 
increased the serum lipid levels and led to the accumulation 
of lipids in the liver [64]. The suppressed activity of AMPK 
and the elevated SREBP-dependent lipid synthesis might 
be related to dyslipidemia induced by antipsychotics, while 
the concomitant treatment with CUR (80 mg/kg/day) dimin-
ished the CLO-stimulated dyslipidemia [64, 65]. Moreover, 
studies have indicated that CUR is probably a novel AMPK 
agonist [64]. It can retain lipid homeostasis by directly 
binding to AMPK, increasing AMPK phosphorylation, and 
reducing CLO-stimulated SREBP overexpression. CUR 
regulates the downstream SREBP-targeted genes attributed 
to cholesterol metabolism and fatty acid synthesis, includ-
ing HMG-CoA reductase (HMGCR) and fatty acid synthase 
(FAS). It implies that the adjunctive usage of CUR might be 
a promising preventive method for lipogenesis induced by 
drugs [64].

CUR’s effective treatment of multiple drug-induced side 
effects of schizophrenia, including hyperglycemia and dys-
lipidemia has attracted much attention. Studies have dem-
onstrated that CUR, by regulating the SREBP pathway, can 
alleviate obesity and decrease lipogenesis in mouse models 

fed with a high fat diet [66]. Although in vivo and in vitro 
studies have indicated the modulatory effects of CUR on 
SREBP-dependent lipid synthesis [66, 67], the mechanisms 
of CUR in terms of restoring SREBP over-activation are not 
fully understood. The main objective of some studies was 
the evaluation of the effects of CUR on metabolic disorders 
induced by CLO. Moreover, for further explanation of the 
potential mechanisms, the AMPK-SREBP signaling path-
way was examined [64]. An essential instigator of metabolic 
disorders is dysregulated lipid metabolism. Some animal 
studies indicated that atypical antipsychotic drug-induced 
dyslipidemia resulted from the stimulation of appetite and 
weight gain, is likely mediated via the antagonistic functions 
of hypothalamic serotonin 5HT2C and histamine H1 recep-
tors [68]. CUR mitigated obesity and the accumulation of 
periphery lipid, and ameliorated insulin sensitivity in high 
fat diet mice [66, 69]. CUR also had an inhibitory effect on 
hepatic fat accumulation and hyperlipidemia in rats fed with 
a high fructose diet [70]. Researchers have found recently 
that, through AMPK-SREBP signaling, CUR reduced renal 
lipid accumulation in type 1 diabetes induced by streptozo-
tocin in rats [65]. Furthermore, through the regulation of 
the AMPK-SREBP pathway, CUR partly restored disorders 
of lipid metabolism induced by CLO. Other investigations 
of cancer cells and primary white adipocytes indicated 
that CUR induced the activation of AMPK [71–73]. Using 
molecular modeling, Zhen Liu et al. further advanced the 
idea that CUR shares usual binding features with the selec-
tive AMPK allosteric ligand, PF-249 [64, 74], which could 
create hydrogen bonds with residues Asn111 and Arg83 and 
could create p-p stacking interactions with residue Hie109 at 

Table 1  (continued)

Study and year Participants Study design Conclusion

Miodownik et al. [61] Patients with chronic schizophre-
nia

Intervention group: Reduced negative symptoms

18_60 years old 3000 mg/day Curcumin

were hospitalized for (1000 mg capsule for 3 daily

over 2 years and oral administrations with meals)

continued receiving their %95 curcumin and %5 piperine 
(n = 20)o

regular antipsychotic compared with placebo group 
(n = 18)

25men, 13 women 24 weeks
Hosseininasab [62] Patients with chronic schizophre-

nia
Intervention group:
160 mg/day nanocurcumin soft gel Improved negative subscale
capsule (n = 28) Improved positive subscale
compared with placebo group 

(n = 28)
Improve in working memory and 

motor speed
16 weeks
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the allosteric modulatory site of AMPK (PDB: 5T5T) [74]. 
In previous studies and other in vitro and in vivo studies, 
the agonist effect of CUR on AMPK was documented [66]. 
Similarly, CUR can have direct interaction with AMPK and 
consequently modulate the SREBP-dependent lipid forma-
tion. It is remarkable that although CUR reduces metabolic 
disorders induced by CLO, it does not affect body weight 
gain. This scenario might be involved in the variant mecha-
nisms of CLO in lipid metabolism and body weight growth. 
Dyslipidemia induced by the drug may occur owing to the 
hepatic AMPK-SREBP pathway which can be modulated by 
CUR, while weight loss stimulated by CLO in male rats is 
likely due to the interferences of the sedative effect of CLO 
on ingestion or its energy expenditure effect in which CUR 
may not play a role [64]. In sum, it appears that there is a 
successful interaction of CUR with CLO-stimulated dyslipi-
demia, indicating that the use of CUR as an adjunctive treat-
ment is promising in the prevention of AAPD-induced lipid 
disorder. Furthermore, the beneficial effects of CUR on lipid 
profile and the involvement of the AMPK-SREBP pathway 
in the AAPD-stimulated hyperlipidemia were shown in pre-
vious studies. Thus, as a novel AMPK agonist, CUR might 
bind to AMPK directly, interestingly shedding extra light on 
the complex pharmacological functions of CUR [64].

Possible Mechanisms

Increasing Brain‑Derived Neurotrophic Factor

The peripheral BDNF levels decrease in schizophrenia 
whilst BDNF levels do not associate with illness severity 
[75]. CUR up-regulates the pro-survival extracellular signal-
regulated kinase (ERK) pathway and leads to the elevation 
of hippocampal BDNF [76, 77]. The properties of anti-
inflammation, anti-oxidation, neuroprotection, and neuro-
cognition, have been offered for CUR in preclinical studies 
[78]. Also, increased levels of BDNF by CUR have been 
shown [78–80]. In schizophrenia, neurocognitive symptoms, 
low levels of BDNF, and the effect of CUR on these phe-
nomena have been reported [81].

Although still the accurate mechanism through which 
CUR can enhance levels of BDNF is not known, there may 
be a role for increased expression of the BDNF gene by 
phosphorylated cAMP response element-binding protein 
(CREB) (Fig. 1) [82]. Likewise, alterations of CREB have 
been indicated in schizophrenia [83], and CUR could poten-
tially increase the expression of BDNF by reversing these 
CREB alterations [58] (Table 1).

Fig. 1  Some mechanisms of curcumin involved in schizophre-
nia. Curcumin phosphorylates CREB (cAMP response element-
binding protein) and increases expression of the BDNF gene (brain 
derived neurotrophic factor). Curcumin blocks abnormal activation 
of PAK1(P21-activated kinase1) that is occurred by DISC1 (dis-
rupted-in-schizophrenia1). Curcumin inhibits HDAC (histone dea-
cetylase) and regulates the expression of non-coding miRNA. Cur-
cumin decreases glutamate cumulation and increases the density of 
NMDA (N-methyl-d-aspartate) receptors and reduces expression of 

glutamate/aspartate transporters in the cerebral cortex. IPLA2 (Ca 
2 + -independent phospholipase A2) expression is restored by upregu-
lating mediators needed to improve inflammation via intake of CUR. 
Curcumin has been proposed as an interesting compound in man-
aging of psychosis episodes in schizophrenia disease because of its 
property in resurrecting the polarization of inflammatory phenotypes 
to anti-inflammatory mode. The neuroprotection property of CUR is 
significantly related to the extended activity of NMDA-NR2A level
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Restoration of imPLA2 Expression

It seems that phospholipase  A2 (PLA2) plays a role in 
schizophrenia, both as a player in enhanced phospholipid 
metabolism and decreased dopaminergic activity in the 
prefrontal cortex [84]. If PLA2 is injected intra-cerebro 
ventricularly in rats, it inhibits apomorphine-induced 
motions, indicating that PLA2 represses the function of 
dopaminergic postsynaptic receptors [5]. Furthermore, 
in schizophrenic brains, mRNA and protein expression 
of secretory  PLA2 (sPLA2), cytosolic  PLA2  (cPLA2), 
and cyclooxygenase (COX) increase in addition to the 
enhancement of cytokines and pro-inflammatory mark-
ers [83]. Elevated flexibility of fatty acid chains in brain 
membranes from the prefrontal cortex of patients with 
schizophrenia has been evidenced, which implies that 
the activity of PLA2 increases [85]. In the initial stage 
of schizophrenia, the brain’s PLA2 activity can increase, 
which is related to structural changes in the left prefrontal 
cortex and thalamus; however, in recurrent episodes of 
the disease extensive relations are found between PLA2 
activity and structural alterations in the left hemisphere 
and cerebellum [86].

By presumably upregulating mediators required for 
injury recovery, dietary treatment with a curcumin (difer-
uloylmethane) derivative restores iPLA2 expression and 
mitigates the consequences of fluid percussion injury, and 
 Ca2+-independent  PLA2 (iPLA2) expression is probably 
restored by upregulating the mediators needed to improve 
inflammation via the intake of dietary supplementation 
which contains a CUR (diferuloylmethane) derivative 
(Fig. 1). PLA2 is also involved in spinal cord injury [87]. 
Four hours after the injury, the following events typically 
happen: the increase of total PLA2 activity and cPLA2α 
(one of cPLA2 isoforms) protein expression, and the 
upregulation of sPLA2-IIE (one of sPLA2 forms) and 
sPLA2-IIA (one of sPLA2 forms). This could lead to the 
creation of secondary mediators which lead to the loss 
of oligodendrocytes and the development of the damage 
[88]. Within 30 min after spinal cord impairment, cPLA2 
knockdown decreases motor defects and cell loss, indicat-
ing an effect of neuroprotection [89].

Blockage of PAK1

A recent study [90] investigated the specific role of the 
GTPase RAC (GTP-dependent transducer) and its effector 
PAK1 in schizophrenia. Schizophrenia can be caused by 
a loss-of-function mutation of a disrupted-in-schizophre-
nia 1 (DISC1) gene. The DISC1 mutation activates the 

RAC-PAK1 signaling pathway [91]. DISC1 interacts with 
TRIO, a RAC activator and normally blocks the TRIO-
RAC-PAK1 pathway in mammals. Thus, DISC1 could be 
a tumor suppressor that could block the oncogenic kinase 
PAK1. It is presumed that PAK1 is unusually activated in 
the schizophrenic brain with DISC1 mutation and that in 
principle, anti-PAK1 drugs could inhibit schizophrenia as 
well [92]. Thus, suppression of PAK1 has been suggested 
as a therapeutic approach in schizophrenia. CUR blocks 
PAK1 (Fig. 1) while does not affect normal cell growth 
[92].

Protection Against Free Radical Damage

Recently, after mitochondrial transplantation in ischemia 
animal models, functional improvement and cellular viabil-
ity have been shown in several studies. Mitochondrial disor-
der, as a major participant in different basic cell processes, 
has frequently been demonstrated in schizophrenia [91]. 
Moreover, the symptoms of mental diseases likely increase 
in patients with mitochondrial dysfunction [93, 94]. In the 
brain and blood cells of schizophrenic patients, alterations 
in the mitochondrial oxidative phosphorylation system 
(OXPHOS) have been discovered. Therefore, schizophrenia 
might be associated with mitochondrial dysfunctions. Ben-
Shachar provided an overview of mitochondrial disorders 
remarked in schizophrenia [95].

Iron oxide magnetic nanoparticles (Including  Fe2O3 and 
 Fe3O4) may affect usual physiological stimuli and cause 
oxidative stress in cells [96]. Moreover, exposure to iron 
oxide magnetic nanoparticles has been associated with nota-
ble toxic effects such as the formation of apoptotic bodies, 
inflammation, generation of ROS, and impaired mitochon-
drial function [97–100]. The investigations indicated that 
the effective treatment with CUR decreased or precluded 
 Fe3O4 magnetic-induced oxidative stress and mitochon-
drial disorder. The results showed that CUR might act as 
an added counteraction mechanism to retain cell integrity 
and defense against free radical injury [101, 102]. CUR, 
because of its lipophilic nature, can enter the central nervous 
system (CNS) [103, 104], and displays an extensive range 
of biological functions containing potent anti-inflammation 
[105], anti-apoptosis [106], anti-neurotoxic [107, 108], anti-
oxidant activities [106, 109], powerful antioxidant activity 
[110], preservation of mitochondrial integration [76, 111], 
and anti-carcinogenic [112]. Additionally, Barzegar and 
Moosavi-Movahedi [113] and Singh et al. [110] demon-
strated that CUR, via scavenging ROS, decreased oxidative 
stress. Thus, it seems that the use of CUR as an adjuvant 
therapy can potentially prevent mitochondrial disorder and 
oxidative stress in schizophrenic animal models that prob-
ably involve various mechanisms [114].
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Anti‑Inflammatory Properties

Neuro-inflammation in research on the neurobiology of 
inflammation has been uncovered as a potential target in 
the improvement of schizophrenic patients [115]. CUR has 
been proposed as an interesting lead compound in manag-
ing psychosis episodes in schizophrenia disease because 
of its property in terms of resurrecting the polarization 
of inflammatory phenotypes to anti-inflammatory mode. 
In summary, it retains a good balance in the polarization 
phenomenon by CUR as an epigenetic modulator between 
the pro- and anti-inflammatory phenotypes of cytokines 
at the neuro-immune interfacing in schizophrenia [116].

NMDA System Modulation

It has been demonstrated that deviant signaling of 
N-methyl-d-aspartate (NMDA)-glutamate relates to the 
negative, positive and cognitive damages in schizophre-
nia [117]. Prior evidence indicates that the NMDA sys-
tem is targeted by CUR-mediated neuroprotection and 
regulation of neuroinflammation [116]. The main deter-
minant in relapse of schizophrenia is stress. The latest 
research showed the buffering effects of CUR against the 
harmful effects of stress [118]. Curcumin reversed the 
negative alterations in the dendritic morphology of CA3 
pyramidal neurons in the hippocampus in the restraint 
stress paradigm in rodents and protected against NMDA-
NR-2B overexpression in the presence of corticosterone 
in the hippocampal neurons [118]. In addition, CUR 
could protect hippocampal neurons versus the upregula-
tion of NMDA-NR-2B (subunit of NMDA receptor) in 
the attendance of corticosterone [118]. In primary reti-
nal and hippocampal neuronal cultures with whole-cell 
patch-clamp, NMDA-induced cell death was protected 
by CUR treatment via decreasing the NMDA-induced 
[Ca (2 +)] (i) current. In fact, the kinetics were dose- and 
time-dependent. Additionally, there was a strong correla-
tion between enhanced NMDA-NR2A activity and cur-
cumin neuroprotection [119]. Greater cardio-metabolic 
risks in schizophrenic patients carried the reduction of 
life expectancy in comparison to the general population 
[120]. Medications targeting the cross-talks of metabolic 
pathways and neural plasticity have encountered marginal 
progression in the treatment of the general well-being of 
schizophrenic patients. For example, blood sugar control 
was discovered to affect the cognitive outcome in patients 
with schizophrenia [116]. The protective effects of CUR 
on NMDA neurotoxicity were reported in a streptozotocin-
caused diabetes model [121]. CUR inverted glutamate 

accumulation and the augmented density of NMDA recep-
tors and reduced expression of glutamate/aspartate trans-
porter in the cerebral cortex. In preclinical and clinical 
studies, there is developing evidence about the helpful 
effects of CUR in metabolic syndrome [122]. Therefore, 
curcumin's neuroprotective properties are combined with 
its positive effects in reducing the detrimental effects of 
metabolic syndrome on the central nervous system, which 
are frequently linked to the use of current antipsychotic 
medications in schizophrenia. When considered collec-
tively, curcumin’s pharmacological profile varies in how it 
affects NMDA-R subunit sensitivity: interaction between 
NR-1 and NR-2 at the allosteric site [123]. Thus, in schizo-
phrenic disease, it released the vulnerable brains from the 
destructive outcomes of neuroinflammation through modu-
lating the cytokine network. Finally, CUR ̓s multifaceted 
CNS pharmacology in interaction with pivotal targets in 
the brain and the periphery in schizophrenia provides it 
with a therapeutic potential [116].

Conclusion

The current review has defined several key properties 
of CUR, particularly its anti‐inflammatory, antioxidant, 
anti-mutagenic, and antimicrobial functions and pro-
tection of the nervous system. CUR reduces psychotic 
symptom severity and improves lipid profile. CUR, as a 
novel AMPK agonist, may have useful pharmacological 
functions. CUR inhibits HDAC and blocks PAK1 while 
not affecting normal cell growth. Therefore, this phyto-
chemical agent can be considered an appropriate candidate 
for the improvement of Schizophrenia. However, further 
research is required to confirm these effects of CUR in 
schizophrenia due to the lack of randomized controlled 
trials. Therefore, it is suggested to conduct clinical trials 
in humans to confirm these influences.
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